Metamath Proof Explorer


Theorem abstri

Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of Gleason p. 133. (Contributed by NM, 7-Mar-2005) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion abstri A B A + B A + B

Proof

Step Hyp Ref Expression
1 2re 2
2 1 a1i A B 2
3 simpl A B A
4 simpr A B B
5 4 cjcld A B B
6 3 5 mulcld A B A B
7 6 recld A B A B
8 2 7 remulcld A B 2 A B
9 abscl A A
10 3 9 syl A B A
11 abscl B B
12 4 11 syl A B B
13 10 12 remulcld A B A B
14 2 13 remulcld A B 2 A B
15 10 resqcld A B A 2
16 12 resqcld A B B 2
17 15 16 readdcld A B A 2 + B 2
18 releabs A B A B A B
19 6 18 syl A B A B A B
20 absmul A B A B = A B
21 3 5 20 syl2anc A B A B = A B
22 abscj B B = B
23 4 22 syl A B B = B
24 23 oveq2d A B A B = A B
25 21 24 eqtrd A B A B = A B
26 19 25 breqtrd A B A B A B
27 2rp 2 +
28 27 a1i A B 2 +
29 7 13 28 lemul2d A B A B A B 2 A B 2 A B
30 26 29 mpbid A B 2 A B 2 A B
31 8 14 17 30 leadd2dd A B A 2 + B 2 + 2 A B A 2 + B 2 + 2 A B
32 sqabsadd A B A + B 2 = A 2 + B 2 + 2 A B
33 10 recnd A B A
34 12 recnd A B B
35 binom2 A B A + B 2 = A 2 + 2 A B + B 2
36 33 34 35 syl2anc A B A + B 2 = A 2 + 2 A B + B 2
37 15 recnd A B A 2
38 14 recnd A B 2 A B
39 16 recnd A B B 2
40 37 38 39 add32d A B A 2 + 2 A B + B 2 = A 2 + B 2 + 2 A B
41 36 40 eqtrd A B A + B 2 = A 2 + B 2 + 2 A B
42 31 32 41 3brtr4d A B A + B 2 A + B 2
43 addcl A B A + B
44 abscl A + B A + B
45 43 44 syl A B A + B
46 10 12 readdcld A B A + B
47 absge0 A + B 0 A + B
48 43 47 syl A B 0 A + B
49 absge0 A 0 A
50 3 49 syl A B 0 A
51 absge0 B 0 B
52 4 51 syl A B 0 B
53 10 12 50 52 addge0d A B 0 A + B
54 45 46 48 53 le2sqd A B A + B A + B A + B 2 A + B 2
55 42 54 mpbird A B A + B A + B