Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|
2 |
1
|
a1i |
|
3 |
|
simpl |
|
4 |
|
simpr |
|
5 |
4
|
cjcld |
|
6 |
3 5
|
mulcld |
|
7 |
6
|
recld |
|
8 |
2 7
|
remulcld |
|
9 |
|
abscl |
|
10 |
3 9
|
syl |
|
11 |
|
abscl |
|
12 |
4 11
|
syl |
|
13 |
10 12
|
remulcld |
|
14 |
2 13
|
remulcld |
|
15 |
10
|
resqcld |
|
16 |
12
|
resqcld |
|
17 |
15 16
|
readdcld |
|
18 |
|
releabs |
|
19 |
6 18
|
syl |
|
20 |
|
absmul |
|
21 |
3 5 20
|
syl2anc |
|
22 |
|
abscj |
|
23 |
4 22
|
syl |
|
24 |
23
|
oveq2d |
|
25 |
21 24
|
eqtrd |
|
26 |
19 25
|
breqtrd |
|
27 |
|
2rp |
|
28 |
27
|
a1i |
|
29 |
7 13 28
|
lemul2d |
|
30 |
26 29
|
mpbid |
|
31 |
8 14 17 30
|
leadd2dd |
|
32 |
|
sqabsadd |
|
33 |
10
|
recnd |
|
34 |
12
|
recnd |
|
35 |
|
binom2 |
|
36 |
33 34 35
|
syl2anc |
|
37 |
15
|
recnd |
|
38 |
14
|
recnd |
|
39 |
16
|
recnd |
|
40 |
37 38 39
|
add32d |
|
41 |
36 40
|
eqtrd |
|
42 |
31 32 41
|
3brtr4d |
|
43 |
|
addcl |
|
44 |
|
abscl |
|
45 |
43 44
|
syl |
|
46 |
10 12
|
readdcld |
|
47 |
|
absge0 |
|
48 |
43 47
|
syl |
|
49 |
|
absge0 |
|
50 |
3 49
|
syl |
|
51 |
|
absge0 |
|
52 |
4 51
|
syl |
|
53 |
10 12 50 52
|
addge0d |
|
54 |
45 46 48 53
|
le2sqd |
|
55 |
42 54
|
mpbird |
|