Metamath Proof Explorer


Theorem abstrid

Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1 φ A
abssubd.2 φ B
Assertion abstrid φ A + B A + B

Proof

Step Hyp Ref Expression
1 abscld.1 φ A
2 abssubd.2 φ B
3 abstri A B A + B A + B
4 1 2 3 syl2anc φ A + B A + B