Metamath Proof Explorer


Theorem abstrii

Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of Gleason p. 133. This is Metamath 100 proof #91. (Contributed by NM, 2-Oct-1999)

Ref Expression
Hypotheses absvalsqi.1 A
abssub.2 B
Assertion abstrii A + B A + B

Proof

Step Hyp Ref Expression
1 absvalsqi.1 A
2 abssub.2 B
3 abstri A B A + B A + B
4 1 2 3 mp2an A + B A + B