Metamath Proof Explorer


Theorem absval2

Description: Value of absolute value function. Definition 10.36 of Gleason p. 133. (Contributed by NM, 17-Mar-2005)

Ref Expression
Assertion absval2 A A = A 2 + A 2

Proof

Step Hyp Ref Expression
1 absval A A = A A
2 cjmulval A A A = A 2 + A 2
3 2 fveq2d A A A = A 2 + A 2
4 1 3 eqtrd A A = A 2 + A 2