Metamath Proof Explorer


Theorem absval2d

Description: Value of absolute value function. Definition 10.36 of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1 φ A
Assertion absval2d φ A = A 2 + A 2

Proof

Step Hyp Ref Expression
1 abscld.1 φ A
2 absval2 A A = A 2 + A 2
3 1 2 syl φ A = A 2 + A 2