Metamath Proof Explorer


Theorem absvalsq2d

Description: Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1 φ A
Assertion absvalsq2d φ A 2 = A 2 + A 2

Proof

Step Hyp Ref Expression
1 abscld.1 φ A
2 absvalsq2 A A 2 = A 2 + A 2
3 1 2 syl φ A 2 = A 2 + A 2