Metamath Proof Explorer


Theorem absz

Description: A real number is an integer iff its absolute value is an integer. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absz AAA

Proof

Step Hyp Ref Expression
1 eleq1 A=AAA
2 1 bicomd A=AAA
3 2 a1i AA=AAA
4 recn AA
5 znegclb AAA
6 4 5 syl AAA
7 eleq1 A=AAA
8 7 bibi2d A=AAAAA
9 6 8 syl5ibrcom AA=AAA
10 absor AA=AA=A
11 3 9 10 mpjaod AAA