Metamath Proof Explorer


Theorem abv

Description: The class of sets verifying a property is the universal class if and only if that property is a tautology. The reverse implication ( bj-abv ) requires fewer axioms. (Contributed by BJ, 19-Mar-2021) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 30-Aug-2024) (Proof shortened by BJ, 30-Aug-2024)

Ref Expression
Assertion abv x | φ = V x φ

Proof

Step Hyp Ref Expression
1 dfcleq x | φ = x | y y x | φ y x |
2 vextru y x |
3 2 tbt y x | φ y x | φ y x |
4 df-clab y x | φ y x φ
5 3 4 bitr3i y x | φ y x | y x φ
6 5 albii y y x | φ y x | y y x φ
7 1 6 bitri x | φ = x | y y x φ
8 dfv2 V = x |
9 8 eqeq2i x | φ = V x | φ = x |
10 nfv y φ
11 10 sb8v x φ y y x φ
12 7 9 11 3bitr4i x | φ = V x φ