Metamath Proof Explorer


Theorem abv0

Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abv0.a A = AbsVal R
abv0.z 0 ˙ = 0 R
Assertion abv0 F A F 0 ˙ = 0

Proof

Step Hyp Ref Expression
1 abv0.a A = AbsVal R
2 abv0.z 0 ˙ = 0 R
3 1 abvrcl F A R Ring
4 eqid Base R = Base R
5 4 2 ring0cl R Ring 0 ˙ Base R
6 3 5 syl F A 0 ˙ Base R
7 eqid 0 ˙ = 0 ˙
8 1 4 2 abveq0 F A 0 ˙ Base R F 0 ˙ = 0 0 ˙ = 0 ˙
9 7 8 mpbiri F A 0 ˙ Base R F 0 ˙ = 0
10 6 9 mpdan F A F 0 ˙ = 0