Metamath Proof Explorer


Theorem abv1

Description: The absolute value of one is one in a division ring. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abv0.a A = AbsVal R
abv1.p 1 ˙ = 1 R
Assertion abv1 R DivRing F A F 1 ˙ = 1

Proof

Step Hyp Ref Expression
1 abv0.a A = AbsVal R
2 abv1.p 1 ˙ = 1 R
3 id F A F A
4 eqid 0 R = 0 R
5 4 2 drngunz R DivRing 1 ˙ 0 R
6 1 2 4 abv1z F A 1 ˙ 0 R F 1 ˙ = 1
7 3 5 6 syl2anr R DivRing F A F 1 ˙ = 1