Step |
Hyp |
Ref |
Expression |
1 |
|
abv0.a |
|
2 |
|
abv1.p |
|
3 |
|
abv1z.z |
|
4 |
1
|
abvrcl |
|
5 |
|
eqid |
|
6 |
5 2
|
ringidcl |
|
7 |
4 6
|
syl |
|
8 |
1 5
|
abvcl |
|
9 |
7 8
|
mpdan |
|
10 |
9
|
adantr |
|
11 |
10
|
recnd |
|
12 |
|
simpl |
|
13 |
7
|
adantr |
|
14 |
|
simpr |
|
15 |
1 5 3
|
abvne0 |
|
16 |
12 13 14 15
|
syl3anc |
|
17 |
11 11 16
|
divcan3d |
|
18 |
|
eqid |
|
19 |
5 18 2
|
ringlidm |
|
20 |
4 13 19
|
syl2an2r |
|
21 |
20
|
fveq2d |
|
22 |
1 5 18
|
abvmul |
|
23 |
12 13 13 22
|
syl3anc |
|
24 |
21 23
|
eqtr3d |
|
25 |
24
|
oveq1d |
|
26 |
11 16
|
dividd |
|
27 |
25 26
|
eqtr3d |
|
28 |
17 27
|
eqtr3d |
|