Metamath Proof Explorer


Theorem abvALT

Description: Alternate proof of abv , shorter but using more axioms. (Contributed by BJ, 19-Mar-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion abvALT x | φ = V x φ

Proof

Step Hyp Ref Expression
1 df-clab y x | φ y x φ
2 1 albii y y x | φ y y x φ
3 eqv x | φ = V y y x | φ
4 nfv y φ
5 4 sb8v x φ y y x φ
6 2 3 5 3bitr4i x | φ = V x φ