Metamath Proof Explorer


Theorem abvcl

Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a A = AbsVal R
abvf.b B = Base R
Assertion abvcl F A X B F X

Proof

Step Hyp Ref Expression
1 abvf.a A = AbsVal R
2 abvf.b B = Base R
3 1 2 abvf F A F : B
4 3 ffvelrnda F A X B F X