Step |
Hyp |
Ref |
Expression |
1 |
|
abv0.a |
|
2 |
|
abvneg.b |
|
3 |
|
abvrec.z |
|
4 |
|
abvdiv.p |
|
5 |
|
simplr |
|
6 |
|
simpr1 |
|
7 |
|
simpll |
|
8 |
|
simpr2 |
|
9 |
|
simpr3 |
|
10 |
|
eqid |
|
11 |
2 3 10
|
drnginvrcl |
|
12 |
7 8 9 11
|
syl3anc |
|
13 |
|
eqid |
|
14 |
1 2 13
|
abvmul |
|
15 |
5 6 12 14
|
syl3anc |
|
16 |
1 2 3 10
|
abvrec |
|
17 |
16
|
3adantr1 |
|
18 |
17
|
oveq2d |
|
19 |
15 18
|
eqtrd |
|
20 |
|
eqid |
|
21 |
2 20 3
|
drngunit |
|
22 |
7 21
|
syl |
|
23 |
8 9 22
|
mpbir2and |
|
24 |
2 13 20 10 4
|
dvrval |
|
25 |
6 23 24
|
syl2anc |
|
26 |
25
|
fveq2d |
|
27 |
1 2
|
abvcl |
|
28 |
5 6 27
|
syl2anc |
|
29 |
28
|
recnd |
|
30 |
1 2
|
abvcl |
|
31 |
5 8 30
|
syl2anc |
|
32 |
31
|
recnd |
|
33 |
1 2 3
|
abvne0 |
|
34 |
5 8 9 33
|
syl3anc |
|
35 |
29 32 34
|
divrecd |
|
36 |
19 26 35
|
3eqtr4d |
|