Step |
Hyp |
Ref |
Expression |
1 |
|
abv0.a |
|
2 |
|
abvneg.b |
|
3 |
|
abvrec.z |
|
4 |
|
abvdom.t |
|
5 |
|
simp1 |
|
6 |
|
simp2l |
|
7 |
|
simp3l |
|
8 |
1 2 4
|
abvmul |
|
9 |
5 6 7 8
|
syl3anc |
|
10 |
1 2
|
abvcl |
|
11 |
5 6 10
|
syl2anc |
|
12 |
11
|
recnd |
|
13 |
1 2
|
abvcl |
|
14 |
5 7 13
|
syl2anc |
|
15 |
14
|
recnd |
|
16 |
|
simp2r |
|
17 |
1 2 3
|
abvne0 |
|
18 |
5 6 16 17
|
syl3anc |
|
19 |
|
simp3r |
|
20 |
1 2 3
|
abvne0 |
|
21 |
5 7 19 20
|
syl3anc |
|
22 |
12 15 18 21
|
mulne0d |
|
23 |
9 22
|
eqnetrd |
|
24 |
1 3
|
abv0 |
|
25 |
5 24
|
syl |
|
26 |
|
fveqeq2 |
|
27 |
25 26
|
syl5ibrcom |
|
28 |
27
|
necon3d |
|
29 |
23 28
|
mpd |
|