Metamath Proof Explorer


Theorem abveq0

Description: The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a A = AbsVal R
abvf.b B = Base R
abveq0.z 0 ˙ = 0 R
Assertion abveq0 F A X B F X = 0 X = 0 ˙

Proof

Step Hyp Ref Expression
1 abvf.a A = AbsVal R
2 abvf.b B = Base R
3 abveq0.z 0 ˙ = 0 R
4 1 abvrcl F A R Ring
5 eqid + R = + R
6 eqid R = R
7 1 2 5 6 3 isabv R Ring F A F : B 0 +∞ x B F x = 0 x = 0 ˙ y B F x R y = F x F y F x + R y F x + F y
8 4 7 syl F A F A F : B 0 +∞ x B F x = 0 x = 0 ˙ y B F x R y = F x F y F x + R y F x + F y
9 8 ibi F A F : B 0 +∞ x B F x = 0 x = 0 ˙ y B F x R y = F x F y F x + R y F x + F y
10 simpl F x = 0 x = 0 ˙ y B F x R y = F x F y F x + R y F x + F y F x = 0 x = 0 ˙
11 10 ralimi x B F x = 0 x = 0 ˙ y B F x R y = F x F y F x + R y F x + F y x B F x = 0 x = 0 ˙
12 9 11 simpl2im F A x B F x = 0 x = 0 ˙
13 fveqeq2 x = X F x = 0 F X = 0
14 eqeq1 x = X x = 0 ˙ X = 0 ˙
15 13 14 bibi12d x = X F x = 0 x = 0 ˙ F X = 0 X = 0 ˙
16 15 rspccva x B F x = 0 x = 0 ˙ X B F X = 0 X = 0 ˙
17 12 16 sylan F A X B F X = 0 X = 0 ˙