Metamath Proof Explorer


Theorem abvf

Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a A = AbsVal R
abvf.b B = Base R
Assertion abvf F A F : B

Proof

Step Hyp Ref Expression
1 abvf.a A = AbsVal R
2 abvf.b B = Base R
3 1 2 abvfge0 F A F : B 0 +∞
4 rge0ssre 0 +∞
5 fss F : B 0 +∞ 0 +∞ F : B
6 3 4 5 sylancl F A F : B