Metamath Proof Explorer


Theorem abvfge0

Description: An absolute value is a function from the ring to the nonnegative real numbers. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a A = AbsVal R
abvf.b B = Base R
Assertion abvfge0 F A F : B 0 +∞

Proof

Step Hyp Ref Expression
1 abvf.a A = AbsVal R
2 abvf.b B = Base R
3 1 abvrcl F A R Ring
4 eqid + R = + R
5 eqid R = R
6 eqid 0 R = 0 R
7 1 2 4 5 6 isabv R Ring F A F : B 0 +∞ x B F x = 0 x = 0 R y B F x R y = F x F y F x + R y F x + F y
8 3 7 syl F A F A F : B 0 +∞ x B F x = 0 x = 0 R y B F x R y = F x F y F x + R y F x + F y
9 8 ibi F A F : B 0 +∞ x B F x = 0 x = 0 R y B F x R y = F x F y F x + R y F x + F y
10 9 simpld F A F : B 0 +∞