Metamath Proof Explorer


Theorem abvge0

Description: The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a A = AbsVal R
abvf.b B = Base R
Assertion abvge0 F A X B 0 F X

Proof

Step Hyp Ref Expression
1 abvf.a A = AbsVal R
2 abvf.b B = Base R
3 1 2 abvfge0 F A F : B 0 +∞
4 3 ffvelrnda F A X B F X 0 +∞
5 elrege0 F X 0 +∞ F X 0 F X
6 5 simprbi F X 0 +∞ 0 F X
7 4 6 syl F A X B 0 F X