Metamath Proof Explorer


Theorem abvgt0

Description: The absolute value of a nonzero number is strictly positive. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a A = AbsVal R
abvf.b B = Base R
abveq0.z 0 ˙ = 0 R
Assertion abvgt0 F A X B X 0 ˙ 0 < F X

Proof

Step Hyp Ref Expression
1 abvf.a A = AbsVal R
2 abvf.b B = Base R
3 abveq0.z 0 ˙ = 0 R
4 1 2 abvcl F A X B F X
5 4 3adant3 F A X B X 0 ˙ F X
6 1 2 abvge0 F A X B 0 F X
7 6 3adant3 F A X B X 0 ˙ 0 F X
8 1 2 3 abvne0 F A X B X 0 ˙ F X 0
9 5 7 8 ne0gt0d F A X B X 0 ˙ 0 < F X