Database BASIC TOPOLOGY Metric spaces Examples of metric spaces abvmet  
				
		 
		
			
		 
		Description:   An absolute value F  generates a metric defined by
       d ( x , y ) = F ( x - y )  , analogously to cnmet  .  (In fact, the
       ring structure is not needed at all; the group properties abveq0  and
       abvtri  , abvneg  are sufficient.)  (Contributed by Mario Carneiro , 9-Sep-2014)   (Revised by Mario Carneiro , 2-Oct-2015) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						abvmet.x   ⊢   X  =  Base  R      
					 
					
						abvmet.a   ⊢   A  =   AbsVal  ⁡  R        
					 
					
						abvmet.m   ⊢   -  ˙ =  -  R      
					 
				
					Assertion 
					abvmet    ⊢   F  ∈  A    →    F  ∘  -  ˙   ∈   Met  ⁡  X          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							abvmet.x  ⊢   X  =  Base  R      
						
							2 
								
							 
							abvmet.a  ⊢   A  =   AbsVal  ⁡  R        
						
							3 
								
							 
							abvmet.m  ⊢   -  ˙ =  -  R      
						
							4 
								
							 
							eqid  ⊢   0  R =  0  R      
						
							5 
								2 
							 
							abvrcl   ⊢   F  ∈  A    →   R  ∈  Ring         
						
							6 
								
							 
							ringgrp   ⊢   R  ∈  Ring    →   R  ∈  Grp         
						
							7 
								5  6 
							 
							syl   ⊢   F  ∈  A    →   R  ∈  Grp         
						
							8 
								2  1 
							 
							abvf   ⊢   F  ∈  A    →   F  :  X  ⟶   ℝ          
						
							9 
								2  1  4 
							 
							abveq0   ⊢    F  ∈  A    ∧   x  ∈  X     →     F  ⁡  x   =   0     ↔   x  =  0  R         
						
							10 
								2  1  3 
							 
							abvsubtri   ⊢    F  ∈  A    ∧   x  ∈  X    ∧   y  ∈  X     →    F  ⁡  x  -  ˙ y   ≤   F  ⁡  x   +   F  ⁡  y         
						
							11 
								10 
							 
							3expb   ⊢    F  ∈  A    ∧    x  ∈  X    ∧   y  ∈  X      →    F  ⁡  x  -  ˙ y   ≤   F  ⁡  x   +   F  ⁡  y         
						
							12 
								1  3  4  7  8  9  11 
							 
							nrmmetd   ⊢   F  ∈  A    →    F  ∘  -  ˙   ∈   Met  ⁡  X