Metamath Proof Explorer


Theorem abvn0b

Description: Another characterization of domains, hinted at in abvtrivg : a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Hypothesis abvn0b.b A = AbsVal R
Assertion abvn0b R Domn R NzRing A

Proof

Step Hyp Ref Expression
1 abvn0b.b A = AbsVal R
2 domnnzr R Domn R NzRing
3 eqid Base R = Base R
4 eqid 0 R = 0 R
5 eqid x Base R if x = 0 R 0 1 = x Base R if x = 0 R 0 1
6 1 3 4 5 abvtrivg R Domn x Base R if x = 0 R 0 1 A
7 6 ne0d R Domn A
8 2 7 jca R Domn R NzRing A
9 n0 A x x A
10 neanior y 0 R z 0 R ¬ y = 0 R z = 0 R
11 an4 y Base R z Base R y 0 R z 0 R y Base R y 0 R z Base R z 0 R
12 eqid R = R
13 1 3 4 12 abvdom x A y Base R y 0 R z Base R z 0 R y R z 0 R
14 13 3expib x A y Base R y 0 R z Base R z 0 R y R z 0 R
15 11 14 biimtrid x A y Base R z Base R y 0 R z 0 R y R z 0 R
16 15 expdimp x A y Base R z Base R y 0 R z 0 R y R z 0 R
17 10 16 biimtrrid x A y Base R z Base R ¬ y = 0 R z = 0 R y R z 0 R
18 17 necon4bd x A y Base R z Base R y R z = 0 R y = 0 R z = 0 R
19 18 ralrimivva x A y Base R z Base R y R z = 0 R y = 0 R z = 0 R
20 19 exlimiv x x A y Base R z Base R y R z = 0 R y = 0 R z = 0 R
21 9 20 sylbi A y Base R z Base R y R z = 0 R y = 0 R z = 0 R
22 21 anim2i R NzRing A R NzRing y Base R z Base R y R z = 0 R y = 0 R z = 0 R
23 3 12 4 isdomn R Domn R NzRing y Base R z Base R y R z = 0 R y = 0 R z = 0 R
24 22 23 sylibr R NzRing A R Domn
25 8 24 impbii R Domn R NzRing A