Metamath Proof Explorer


Theorem abvne0

Description: The absolute value of a nonzero number is nonzero. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a A = AbsVal R
abvf.b B = Base R
abveq0.z 0 ˙ = 0 R
Assertion abvne0 F A X B X 0 ˙ F X 0

Proof

Step Hyp Ref Expression
1 abvf.a A = AbsVal R
2 abvf.b B = Base R
3 abveq0.z 0 ˙ = 0 R
4 1 2 3 abveq0 F A X B F X = 0 X = 0 ˙
5 4 necon3bid F A X B F X 0 X 0 ˙
6 5 biimp3ar F A X B X 0 ˙ F X 0