Step |
Hyp |
Ref |
Expression |
1 |
|
abv0.a |
|
2 |
|
abvneg.b |
|
3 |
|
abvneg.p |
|
4 |
1
|
abvrcl |
|
5 |
4
|
adantr |
|
6 |
|
ringgrp |
|
7 |
4 6
|
syl |
|
8 |
2 3
|
grpinvcl |
|
9 |
7 8
|
sylan |
|
10 |
|
simpr |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
2 11 12
|
ring1eq0 |
|
14 |
5 9 10 13
|
syl3anc |
|
15 |
14
|
imp |
|
16 |
15
|
fveq2d |
|
17 |
2 11
|
ringidcl |
|
18 |
4 17
|
syl |
|
19 |
2 3
|
grpinvcl |
|
20 |
7 18 19
|
syl2anc |
|
21 |
1 2
|
abvcl |
|
22 |
20 21
|
mpdan |
|
23 |
22
|
recnd |
|
24 |
23
|
sqvald |
|
25 |
|
eqid |
|
26 |
1 2 25
|
abvmul |
|
27 |
20 20 26
|
mpd3an23 |
|
28 |
2 25 3 4 20 18
|
ringmneg2 |
|
29 |
2 25 11 3 4 18
|
ringnegl |
|
30 |
29
|
fveq2d |
|
31 |
2 3
|
grpinvinv |
|
32 |
7 18 31
|
syl2anc |
|
33 |
28 30 32
|
3eqtrd |
|
34 |
33
|
fveq2d |
|
35 |
24 27 34
|
3eqtr2d |
|
36 |
35
|
adantr |
|
37 |
1 11 12
|
abv1z |
|
38 |
36 37
|
eqtrd |
|
39 |
|
sq1 |
|
40 |
38 39
|
eqtr4di |
|
41 |
1 2
|
abvge0 |
|
42 |
20 41
|
mpdan |
|
43 |
|
1re |
|
44 |
|
0le1 |
|
45 |
|
sq11 |
|
46 |
43 44 45
|
mpanr12 |
|
47 |
22 42 46
|
syl2anc |
|
48 |
47
|
biimpa |
|
49 |
40 48
|
syldan |
|
50 |
49
|
adantlr |
|
51 |
50
|
oveq1d |
|
52 |
|
simpl |
|
53 |
20
|
adantr |
|
54 |
1 2 25
|
abvmul |
|
55 |
52 53 10 54
|
syl3anc |
|
56 |
2 25 11 3 5 10
|
ringnegl |
|
57 |
56
|
fveq2d |
|
58 |
55 57
|
eqtr3d |
|
59 |
58
|
adantr |
|
60 |
51 59
|
eqtr3d |
|
61 |
1 2
|
abvcl |
|
62 |
61
|
recnd |
|
63 |
62
|
mulid2d |
|
64 |
63
|
adantr |
|
65 |
60 64
|
eqtr3d |
|
66 |
16 65
|
pm2.61dane |
|