Step |
Hyp |
Ref |
Expression |
1 |
|
abvpropd.1 |
|
2 |
|
abvpropd.2 |
|
3 |
|
abvpropd.3 |
|
4 |
|
abvpropd.4 |
|
5 |
1 2 3 4
|
ringpropd |
|
6 |
1 2
|
eqtr3d |
|
7 |
6
|
feq2d |
|
8 |
1 2 3
|
grpidpropd |
|
9 |
8
|
adantr |
|
10 |
9
|
eqeq2d |
|
11 |
10
|
bibi2d |
|
12 |
4
|
fveqeq2d |
|
13 |
3
|
fveq2d |
|
14 |
13
|
breq1d |
|
15 |
12 14
|
anbi12d |
|
16 |
15
|
anassrs |
|
17 |
16
|
ralbidva |
|
18 |
11 17
|
anbi12d |
|
19 |
18
|
ralbidva |
|
20 |
1
|
raleqdv |
|
21 |
20
|
anbi2d |
|
22 |
1 21
|
raleqbidv |
|
23 |
2
|
raleqdv |
|
24 |
23
|
anbi2d |
|
25 |
2 24
|
raleqbidv |
|
26 |
19 22 25
|
3bitr3d |
|
27 |
7 26
|
anbi12d |
|
28 |
5 27
|
anbi12d |
|
29 |
|
eqid |
|
30 |
29
|
abvrcl |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
29 31 32 33 34
|
isabv |
|
36 |
30 35
|
biadanii |
|
37 |
|
eqid |
|
38 |
37
|
abvrcl |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
37 39 40 41 42
|
isabv |
|
44 |
38 43
|
biadanii |
|
45 |
28 36 44
|
3bitr4g |
|
46 |
45
|
eqrdv |
|