Metamath Proof Explorer


Theorem abvpropd2

Description: Weaker version of abvpropd . (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses abvpropd2.1 φ Base K = Base L
abvpropd2.2 φ + K = + L
abvpropd2.3 φ K = L
Assertion abvpropd2 φ AbsVal K = AbsVal L

Proof

Step Hyp Ref Expression
1 abvpropd2.1 φ Base K = Base L
2 abvpropd2.2 φ + K = + L
3 abvpropd2.3 φ K = L
4 eqidd φ Base K = Base K
5 2 oveqdr φ x Base K y Base K x + K y = x + L y
6 3 oveqdr φ x Base K y Base K x K y = x L y
7 4 1 5 6 abvpropd φ AbsVal K = AbsVal L