Database
BASIC ALGEBRAIC STRUCTURES
Division rings and fields
Absolute value (abstract algebra)
abvrcl
Next ⟩
abvfge0
Metamath Proof Explorer
Ascii
Unicode
Theorem
abvrcl
Description:
Reverse closure for the absolute value set.
(Contributed by
Mario Carneiro
, 8-Sep-2014)
Ref
Expression
Hypothesis
abvf.a
⊢
A
=
AbsVal
⁡
R
Assertion
abvrcl
⊢
F
∈
A
→
R
∈
Ring
Proof
Step
Hyp
Ref
Expression
1
abvf.a
⊢
A
=
AbsVal
⁡
R
2
df-abv
⊢
AbsVal
=
r
∈
Ring
⟼
f
∈
0
+∞
Base
r
|
∀
x
∈
Base
r
f
⁡
x
=
0
↔
x
=
0
r
∧
∀
y
∈
Base
r
f
⁡
x
⋅
r
y
=
f
⁡
x
⁢
f
⁡
y
∧
f
⁡
x
+
r
y
≤
f
⁡
x
+
f
⁡
y
3
2
mptrcl
⊢
F
∈
AbsVal
⁡
R
→
R
∈
Ring
4
3
1
eleq2s
⊢
F
∈
A
→
R
∈
Ring