Metamath Proof Explorer


Theorem abvrcl

Description: Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypothesis abvf.a A = AbsVal R
Assertion abvrcl F A R Ring

Proof

Step Hyp Ref Expression
1 abvf.a A = AbsVal R
2 df-abv AbsVal = r Ring f 0 +∞ Base r | x Base r f x = 0 x = 0 r y Base r f x r y = f x f y f x + r y f x + f y
3 2 mptrcl F AbsVal R R Ring
4 3 1 eleq2s F A R Ring