Metamath Proof Explorer


Theorem abvres

Description: The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses abvres.a A = AbsVal R
abvres.s S = R 𝑠 C
abvres.b B = AbsVal S
Assertion abvres F A C SubRing R F C B

Proof

Step Hyp Ref Expression
1 abvres.a A = AbsVal R
2 abvres.s S = R 𝑠 C
3 abvres.b B = AbsVal S
4 3 a1i F A C SubRing R B = AbsVal S
5 2 subrgbas C SubRing R C = Base S
6 5 adantl F A C SubRing R C = Base S
7 eqid + R = + R
8 2 7 ressplusg C SubRing R + R = + S
9 8 adantl F A C SubRing R + R = + S
10 eqid R = R
11 2 10 ressmulr C SubRing R R = S
12 11 adantl F A C SubRing R R = S
13 subrgsubg C SubRing R C SubGrp R
14 13 adantl F A C SubRing R C SubGrp R
15 eqid 0 R = 0 R
16 2 15 subg0 C SubGrp R 0 R = 0 S
17 14 16 syl F A C SubRing R 0 R = 0 S
18 2 subrgring C SubRing R S Ring
19 18 adantl F A C SubRing R S Ring
20 eqid Base R = Base R
21 1 20 abvf F A F : Base R
22 20 subrgss C SubRing R C Base R
23 fssres F : Base R C Base R F C : C
24 21 22 23 syl2an F A C SubRing R F C : C
25 15 subg0cl C SubGrp R 0 R C
26 fvres 0 R C F C 0 R = F 0 R
27 14 25 26 3syl F A C SubRing R F C 0 R = F 0 R
28 1 15 abv0 F A F 0 R = 0
29 28 adantr F A C SubRing R F 0 R = 0
30 27 29 eqtrd F A C SubRing R F C 0 R = 0
31 simp1l F A C SubRing R x C x 0 R F A
32 22 adantl F A C SubRing R C Base R
33 32 sselda F A C SubRing R x C x Base R
34 33 3adant3 F A C SubRing R x C x 0 R x Base R
35 simp3 F A C SubRing R x C x 0 R x 0 R
36 1 20 15 abvgt0 F A x Base R x 0 R 0 < F x
37 31 34 35 36 syl3anc F A C SubRing R x C x 0 R 0 < F x
38 fvres x C F C x = F x
39 38 3ad2ant2 F A C SubRing R x C x 0 R F C x = F x
40 37 39 breqtrrd F A C SubRing R x C x 0 R 0 < F C x
41 simp1l F A C SubRing R x C x 0 R y C y 0 R F A
42 simp1r F A C SubRing R x C x 0 R y C y 0 R C SubRing R
43 42 22 syl F A C SubRing R x C x 0 R y C y 0 R C Base R
44 simp2l F A C SubRing R x C x 0 R y C y 0 R x C
45 43 44 sseldd F A C SubRing R x C x 0 R y C y 0 R x Base R
46 simp3l F A C SubRing R x C x 0 R y C y 0 R y C
47 43 46 sseldd F A C SubRing R x C x 0 R y C y 0 R y Base R
48 1 20 10 abvmul F A x Base R y Base R F x R y = F x F y
49 41 45 47 48 syl3anc F A C SubRing R x C x 0 R y C y 0 R F x R y = F x F y
50 10 subrgmcl C SubRing R x C y C x R y C
51 42 44 46 50 syl3anc F A C SubRing R x C x 0 R y C y 0 R x R y C
52 51 fvresd F A C SubRing R x C x 0 R y C y 0 R F C x R y = F x R y
53 44 fvresd F A C SubRing R x C x 0 R y C y 0 R F C x = F x
54 46 fvresd F A C SubRing R x C x 0 R y C y 0 R F C y = F y
55 53 54 oveq12d F A C SubRing R x C x 0 R y C y 0 R F C x F C y = F x F y
56 49 52 55 3eqtr4d F A C SubRing R x C x 0 R y C y 0 R F C x R y = F C x F C y
57 1 20 7 abvtri F A x Base R y Base R F x + R y F x + F y
58 41 45 47 57 syl3anc F A C SubRing R x C x 0 R y C y 0 R F x + R y F x + F y
59 7 subrgacl C SubRing R x C y C x + R y C
60 42 44 46 59 syl3anc F A C SubRing R x C x 0 R y C y 0 R x + R y C
61 60 fvresd F A C SubRing R x C x 0 R y C y 0 R F C x + R y = F x + R y
62 53 54 oveq12d F A C SubRing R x C x 0 R y C y 0 R F C x + F C y = F x + F y
63 58 61 62 3brtr4d F A C SubRing R x C x 0 R y C y 0 R F C x + R y F C x + F C y
64 4 6 9 12 17 19 24 30 40 56 63 isabvd F A C SubRing R F C B