Step |
Hyp |
Ref |
Expression |
1 |
|
abvres.a |
|
2 |
|
abvres.s |
|
3 |
|
abvres.b |
|
4 |
3
|
a1i |
|
5 |
2
|
subrgbas |
|
6 |
5
|
adantl |
|
7 |
|
eqid |
|
8 |
2 7
|
ressplusg |
|
9 |
8
|
adantl |
|
10 |
|
eqid |
|
11 |
2 10
|
ressmulr |
|
12 |
11
|
adantl |
|
13 |
|
subrgsubg |
|
14 |
13
|
adantl |
|
15 |
|
eqid |
|
16 |
2 15
|
subg0 |
|
17 |
14 16
|
syl |
|
18 |
2
|
subrgring |
|
19 |
18
|
adantl |
|
20 |
|
eqid |
|
21 |
1 20
|
abvf |
|
22 |
20
|
subrgss |
|
23 |
|
fssres |
|
24 |
21 22 23
|
syl2an |
|
25 |
15
|
subg0cl |
|
26 |
|
fvres |
|
27 |
14 25 26
|
3syl |
|
28 |
1 15
|
abv0 |
|
29 |
28
|
adantr |
|
30 |
27 29
|
eqtrd |
|
31 |
|
simp1l |
|
32 |
22
|
adantl |
|
33 |
32
|
sselda |
|
34 |
33
|
3adant3 |
|
35 |
|
simp3 |
|
36 |
1 20 15
|
abvgt0 |
|
37 |
31 34 35 36
|
syl3anc |
|
38 |
|
fvres |
|
39 |
38
|
3ad2ant2 |
|
40 |
37 39
|
breqtrrd |
|
41 |
|
simp1l |
|
42 |
|
simp1r |
|
43 |
42 22
|
syl |
|
44 |
|
simp2l |
|
45 |
43 44
|
sseldd |
|
46 |
|
simp3l |
|
47 |
43 46
|
sseldd |
|
48 |
1 20 10
|
abvmul |
|
49 |
41 45 47 48
|
syl3anc |
|
50 |
10
|
subrgmcl |
|
51 |
42 44 46 50
|
syl3anc |
|
52 |
51
|
fvresd |
|
53 |
44
|
fvresd |
|
54 |
46
|
fvresd |
|
55 |
53 54
|
oveq12d |
|
56 |
49 52 55
|
3eqtr4d |
|
57 |
1 20 7
|
abvtri |
|
58 |
41 45 47 57
|
syl3anc |
|
59 |
7
|
subrgacl |
|
60 |
42 44 46 59
|
syl3anc |
|
61 |
60
|
fvresd |
|
62 |
53 54
|
oveq12d |
|
63 |
58 61 62
|
3brtr4d |
|
64 |
4 6 9 12 17 19 24 30 40 56 63
|
isabvd |
|