| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abv0.a |
|
| 2 |
|
abvneg.b |
|
| 3 |
|
abvsubtri.p |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
2 4 5 3
|
grpsubval |
|
| 7 |
6
|
3adant1 |
|
| 8 |
7
|
fveq2d |
|
| 9 |
1
|
abvrcl |
|
| 10 |
9
|
3ad2ant1 |
|
| 11 |
|
ringgrp |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
simp3 |
|
| 14 |
2 5
|
grpinvcl |
|
| 15 |
12 13 14
|
syl2anc |
|
| 16 |
1 2 4
|
abvtri |
|
| 17 |
15 16
|
syld3an3 |
|
| 18 |
1 2 5
|
abvneg |
|
| 19 |
18
|
3adant2 |
|
| 20 |
19
|
oveq2d |
|
| 21 |
17 20
|
breqtrd |
|
| 22 |
8 21
|
eqbrtrd |
|