Metamath Proof Explorer


Theorem abvtriv

Description: The trivial absolute value. (This theorem is true as long as R is a domain, but it is not true for rings with zero divisors, which violate the multiplication axiom; abvdom is the converse of this remark.) (Contributed by Mario Carneiro, 8-Sep-2014) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses abvtriv.a A = AbsVal R
abvtriv.b B = Base R
abvtriv.z 0 ˙ = 0 R
abvtriv.f F = x B if x = 0 ˙ 0 1
Assertion abvtriv R DivRing F A

Proof

Step Hyp Ref Expression
1 abvtriv.a A = AbsVal R
2 abvtriv.b B = Base R
3 abvtriv.z 0 ˙ = 0 R
4 abvtriv.f F = x B if x = 0 ˙ 0 1
5 eqid R = R
6 drngring R DivRing R Ring
7 biid R DivRing R DivRing
8 eldifsn y B 0 ˙ y B y 0 ˙
9 eldifsn z B 0 ˙ z B z 0 ˙
10 2 5 3 drngmcl R DivRing y B 0 ˙ z B 0 ˙ y R z B 0 ˙
11 7 8 9 10 syl3anbr R DivRing y B y 0 ˙ z B z 0 ˙ y R z B 0 ˙
12 eldifsn y R z B 0 ˙ y R z B y R z 0 ˙
13 11 12 sylib R DivRing y B y 0 ˙ z B z 0 ˙ y R z B y R z 0 ˙
14 13 simprd R DivRing y B y 0 ˙ z B z 0 ˙ y R z 0 ˙
15 1 2 3 4 5 6 14 abvtrivd R DivRing F A