Metamath Proof Explorer


Theorem abvtriv

Description: The trivial absolute value. (Contributed by Mario Carneiro, 8-Sep-2014) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses abvtriv.a A = AbsVal R
abvtriv.b B = Base R
abvtriv.z 0 ˙ = 0 R
abvtriv.f F = x B if x = 0 ˙ 0 1
Assertion abvtriv R DivRing F A

Proof

Step Hyp Ref Expression
1 abvtriv.a A = AbsVal R
2 abvtriv.b B = Base R
3 abvtriv.z 0 ˙ = 0 R
4 abvtriv.f F = x B if x = 0 ˙ 0 1
5 drngdomn R DivRing R Domn
6 1 2 3 4 abvtrivg R Domn F A
7 5 6 syl R DivRing F A