Step |
Hyp |
Ref |
Expression |
1 |
|
abvtriv.a |
|
2 |
|
abvtriv.b |
|
3 |
|
abvtriv.z |
|
4 |
|
abvtriv.f |
|
5 |
|
abvtrivd.1 |
|
6 |
|
abvtrivd.2 |
|
7 |
|
abvtrivd.3 |
|
8 |
1
|
a1i |
|
9 |
2
|
a1i |
|
10 |
|
eqidd |
|
11 |
5
|
a1i |
|
12 |
3
|
a1i |
|
13 |
|
0re |
|
14 |
|
1re |
|
15 |
13 14
|
ifcli |
|
16 |
15
|
a1i |
|
17 |
16 4
|
fmptd |
|
18 |
2 3
|
ring0cl |
|
19 |
|
iftrue |
|
20 |
|
c0ex |
|
21 |
19 4 20
|
fvmpt |
|
22 |
6 18 21
|
3syl |
|
23 |
|
0lt1 |
|
24 |
|
eqeq1 |
|
25 |
24
|
ifbid |
|
26 |
|
1ex |
|
27 |
20 26
|
ifex |
|
28 |
25 4 27
|
fvmpt |
|
29 |
|
ifnefalse |
|
30 |
28 29
|
sylan9eq |
|
31 |
30
|
3adant1 |
|
32 |
23 31
|
breqtrrid |
|
33 |
|
1t1e1 |
|
34 |
33
|
eqcomi |
|
35 |
6
|
3ad2ant1 |
|
36 |
|
simp2l |
|
37 |
|
simp3l |
|
38 |
2 5
|
ringcl |
|
39 |
35 36 37 38
|
syl3anc |
|
40 |
|
eqeq1 |
|
41 |
40
|
ifbid |
|
42 |
20 26
|
ifex |
|
43 |
41 4 42
|
fvmpt |
|
44 |
39 43
|
syl |
|
45 |
7
|
neneqd |
|
46 |
45
|
iffalsed |
|
47 |
44 46
|
eqtrd |
|
48 |
36 28
|
syl |
|
49 |
|
simp2r |
|
50 |
49
|
neneqd |
|
51 |
50
|
iffalsed |
|
52 |
48 51
|
eqtrd |
|
53 |
|
eqeq1 |
|
54 |
53
|
ifbid |
|
55 |
20 26
|
ifex |
|
56 |
54 4 55
|
fvmpt |
|
57 |
37 56
|
syl |
|
58 |
|
simp3r |
|
59 |
58
|
neneqd |
|
60 |
59
|
iffalsed |
|
61 |
57 60
|
eqtrd |
|
62 |
52 61
|
oveq12d |
|
63 |
34 47 62
|
3eqtr4a |
|
64 |
|
breq1 |
|
65 |
|
breq1 |
|
66 |
|
0le2 |
|
67 |
|
1le2 |
|
68 |
64 65 66 67
|
keephyp |
|
69 |
|
df-2 |
|
70 |
68 69
|
breqtri |
|
71 |
70
|
a1i |
|
72 |
|
ringgrp |
|
73 |
6 72
|
syl |
|
74 |
73
|
3ad2ant1 |
|
75 |
|
eqid |
|
76 |
2 75
|
grpcl |
|
77 |
74 36 37 76
|
syl3anc |
|
78 |
|
eqeq1 |
|
79 |
78
|
ifbid |
|
80 |
20 26
|
ifex |
|
81 |
79 4 80
|
fvmpt |
|
82 |
77 81
|
syl |
|
83 |
52 61
|
oveq12d |
|
84 |
71 82 83
|
3brtr4d |
|
85 |
8 9 10 11 12 6 17 22 32 63 84
|
isabvd |
|