Database
BASIC ALGEBRAIC STRUCTURES
Division rings and fields
Absolute value (abstract algebra)
abvtrivg
Metamath Proof Explorer
Description: The trivial absolute value. This theorem is not true for rings with
zero divisors, which violate the multiplication axiom; abvdom is the
converse of this theorem. (Contributed by SN , 25-Jun-2025)
Ref
Expression
Hypotheses
abvtriv.a
⊢ A = AbsVal ⁡ R
abvtriv.b
⊢ B = Base R
abvtriv.z
⊢ 0 ˙ = 0 R
abvtriv.f
⊢ F = x ∈ B ⟼ if x = 0 ˙ 0 1
Assertion
abvtrivg
⊢ R ∈ Domn → F ∈ A
Proof
Step
Hyp
Ref
Expression
1
abvtriv.a
⊢ A = AbsVal ⁡ R
2
abvtriv.b
⊢ B = Base R
3
abvtriv.z
⊢ 0 ˙ = 0 R
4
abvtriv.f
⊢ F = x ∈ B ⟼ if x = 0 ˙ 0 1
5
eqid
⊢ ⋅ R = ⋅ R
6
domnring
⊢ R ∈ Domn → R ∈ Ring
7
2 5 3
domnmuln0
⊢ R ∈ Domn ∧ y ∈ B ∧ y ≠ 0 ˙ ∧ z ∈ B ∧ z ≠ 0 ˙ → y ⋅ R z ≠ 0 ˙
8
1 2 3 4 5 6 7
abvtrivd
⊢ R ∈ Domn → F ∈ A