Metamath Proof Explorer


Theorem abvtrivg

Description: The trivial absolute value. This theorem is not true for rings with zero divisors, which violate the multiplication axiom; abvdom is the converse of this theorem. (Contributed by SN, 25-Jun-2025)

Ref Expression
Hypotheses abvtriv.a A = AbsVal R
abvtriv.b B = Base R
abvtriv.z 0 ˙ = 0 R
abvtriv.f F = x B if x = 0 ˙ 0 1
Assertion abvtrivg R Domn F A

Proof

Step Hyp Ref Expression
1 abvtriv.a A = AbsVal R
2 abvtriv.b B = Base R
3 abvtriv.z 0 ˙ = 0 R
4 abvtriv.f F = x B if x = 0 ˙ 0 1
5 eqid R = R
6 domnring R Domn R Ring
7 2 5 3 domnmuln0 R Domn y B y 0 ˙ z B z 0 ˙ y R z 0 ˙
8 1 2 3 4 5 6 7 abvtrivd R Domn F A