Metamath Proof Explorer


Theorem ac10ct

Description: A proof of the well-ordering theorem weth , an Axiom of Choice equivalent, restricted to sets dominated by some ordinal (in particular finite sets and countable sets), proven in ZF without AC. (Contributed by Mario Carneiro, 5-Jan-2013)

Ref Expression
Assertion ac10ct y On A y x x We A

Proof

Step Hyp Ref Expression
1 vex y V
2 1 brdom A y f f : A 1-1 y
3 f1f f : A 1-1 y f : A y
4 3 frnd f : A 1-1 y ran f y
5 onss y On y On
6 sstr2 ran f y y On ran f On
7 4 5 6 syl2im f : A 1-1 y y On ran f On
8 epweon E We On
9 wess ran f On E We On E We ran f
10 7 8 9 syl6mpi f : A 1-1 y y On E We ran f
11 10 adantl A y f : A 1-1 y y On E We ran f
12 f1f1orn f : A 1-1 y f : A 1-1 onto ran f
13 eqid w z | f w E f z = w z | f w E f z
14 13 f1owe f : A 1-1 onto ran f E We ran f w z | f w E f z We A
15 12 14 syl f : A 1-1 y E We ran f w z | f w E f z We A
16 weinxp w z | f w E f z We A w z | f w E f z A × A We A
17 reldom Rel
18 17 brrelex1i A y A V
19 sqxpexg A V A × A V
20 incom A × A w z | f w E f z = w z | f w E f z A × A
21 inex1g A × A V A × A w z | f w E f z V
22 20 21 eqeltrrid A × A V w z | f w E f z A × A V
23 weeq1 x = w z | f w E f z A × A x We A w z | f w E f z A × A We A
24 23 spcegv w z | f w E f z A × A V w z | f w E f z A × A We A x x We A
25 18 19 22 24 4syl A y w z | f w E f z A × A We A x x We A
26 16 25 syl5bi A y w z | f w E f z We A x x We A
27 15 26 sylan9r A y f : A 1-1 y E We ran f x x We A
28 11 27 syld A y f : A 1-1 y y On x x We A
29 28 impancom A y y On f : A 1-1 y x x We A
30 29 exlimdv A y y On f f : A 1-1 y x x We A
31 2 30 syl5bi A y y On A y x x We A
32 31 ex A y y On A y x x We A
33 32 pm2.43b y On A y x x We A
34 33 rexlimiv y On A y x x We A