Metamath Proof Explorer


Theorem ac4c

Description: Equivalent of Axiom of Choice (class version). (Contributed by NM, 10-Feb-1997)

Ref Expression
Hypothesis ac4c.1 A V
Assertion ac4c f x A x f x x

Proof

Step Hyp Ref Expression
1 ac4c.1 A V
2 raleq y = A x y x f x x x A x f x x
3 2 exbidv y = A f x y x f x x f x A x f x x
4 ac4 f x y x f x x
5 1 3 4 vtocl f x A x f x x