Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Introduce the Axiom of Choice
ac4c
Next ⟩
ac5
Metamath Proof Explorer
Ascii
Unicode
Theorem
ac4c
Description:
Equivalent of Axiom of Choice (class version).
(Contributed by
NM
, 10-Feb-1997)
Ref
Expression
Hypothesis
ac4c.1
⊢
A
∈
V
Assertion
ac4c
⊢
∃
f
∀
x
∈
A
x
≠
∅
→
f
⁡
x
∈
x
Proof
Step
Hyp
Ref
Expression
1
ac4c.1
⊢
A
∈
V
2
raleq
⊢
y
=
A
→
∀
x
∈
y
x
≠
∅
→
f
⁡
x
∈
x
↔
∀
x
∈
A
x
≠
∅
→
f
⁡
x
∈
x
3
2
exbidv
⊢
y
=
A
→
∃
f
∀
x
∈
y
x
≠
∅
→
f
⁡
x
∈
x
↔
∃
f
∀
x
∈
A
x
≠
∅
→
f
⁡
x
∈
x
4
ac4
⊢
∃
f
∀
x
∈
y
x
≠
∅
→
f
⁡
x
∈
x
5
1
3
4
vtocl
⊢
∃
f
∀
x
∈
A
x
≠
∅
→
f
⁡
x
∈
x