Metamath Proof Explorer


Theorem ac5

Description: An Axiom of Choice equivalent: there exists a function f (called a choice function) with domain A that maps each nonempty member of the domain to an element of that member. Axiom AC of BellMachover p. 488. Note that the assertion that f be a function is not necessary; see ac4 . (Contributed by NM, 29-Aug-1999)

Ref Expression
Hypothesis ac5.1 A V
Assertion ac5 f f Fn A x A x f x x

Proof

Step Hyp Ref Expression
1 ac5.1 A V
2 fneq2 y = A f Fn y f Fn A
3 raleq y = A x y x f x x x A x f x x
4 2 3 anbi12d y = A f Fn y x y x f x x f Fn A x A x f x x
5 4 exbidv y = A f f Fn y x y x f x x f f Fn A x A x f x x
6 dfac4 CHOICE y f f Fn y x y x f x x
7 6 axaci f f Fn y x y x f x x
8 1 5 7 vtocl f f Fn A x A x f x x