Metamath Proof Explorer


Theorem ac6

Description: Equivalent of Axiom of Choice. This is useful for proving that there exists, for example, a sequence mapping natural numbers to members of a larger set B , where ph depends on x (the natural number) and y (to specify a member of B ). A stronger version of this theorem, ac6s , allows B to be a proper class. (Contributed by NM, 18-Oct-1999) (Revised by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses ac6.1 A V
ac6.2 B V
ac6.3 y = f x φ ψ
Assertion ac6 x A y B φ f f : A B x A ψ

Proof

Step Hyp Ref Expression
1 ac6.1 A V
2 ac6.2 B V
3 ac6.3 y = f x φ ψ
4 ssrab2 y B | φ B
5 4 rgenw x A y B | φ B
6 iunss x A y B | φ B x A y B | φ B
7 5 6 mpbir x A y B | φ B
8 2 7 ssexi x A y B | φ V
9 numth3 x A y B | φ V x A y B | φ dom card
10 8 9 ax-mp x A y B | φ dom card
11 3 ac6num A V x A y B | φ dom card x A y B φ f f : A B x A ψ
12 1 10 11 mp3an12 x A y B φ f f : A B x A ψ