Metamath Proof Explorer


Theorem ac6n

Description: Equivalent of Axiom of Choice. Contrapositive of ac6s . (Contributed by NM, 10-Jun-2007)

Ref Expression
Hypotheses ac6s.1 A V
ac6s.2 y = f x φ ψ
Assertion ac6n f f : A B x A ψ x A y B φ

Proof

Step Hyp Ref Expression
1 ac6s.1 A V
2 ac6s.2 y = f x φ ψ
3 2 notbid y = f x ¬ φ ¬ ψ
4 1 3 ac6s x A y B ¬ φ f f : A B x A ¬ ψ
5 4 con3i ¬ f f : A B x A ¬ ψ ¬ x A y B ¬ φ
6 dfrex2 x A ψ ¬ x A ¬ ψ
7 6 imbi2i f : A B x A ψ f : A B ¬ x A ¬ ψ
8 7 albii f f : A B x A ψ f f : A B ¬ x A ¬ ψ
9 alinexa f f : A B ¬ x A ¬ ψ ¬ f f : A B x A ¬ ψ
10 8 9 bitri f f : A B x A ψ ¬ f f : A B x A ¬ ψ
11 dfral2 y B φ ¬ y B ¬ φ
12 11 rexbii x A y B φ x A ¬ y B ¬ φ
13 rexnal x A ¬ y B ¬ φ ¬ x A y B ¬ φ
14 12 13 bitri x A y B φ ¬ x A y B ¬ φ
15 5 10 14 3imtr4i f f : A B x A ψ x A y B φ