| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ac6num.1 |
|
| 2 |
|
nfiu1 |
|
| 3 |
2
|
nfel1 |
|
| 4 |
|
ssiun2 |
|
| 5 |
|
ssexg |
|
| 6 |
5
|
expcom |
|
| 7 |
4 6
|
syl5 |
|
| 8 |
3 7
|
ralrimi |
|
| 9 |
|
dfiun2g |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
eqid |
|
| 12 |
11
|
rnmpt |
|
| 13 |
12
|
unieqi |
|
| 14 |
10 13
|
eqtr4di |
|
| 15 |
|
id |
|
| 16 |
14 15
|
eqeltrrd |
|
| 17 |
16
|
3ad2ant2 |
|
| 18 |
|
simp3 |
|
| 19 |
|
necom |
|
| 20 |
|
rabn0 |
|
| 21 |
|
df-ne |
|
| 22 |
19 20 21
|
3bitr3i |
|
| 23 |
22
|
ralbii |
|
| 24 |
|
ralnex |
|
| 25 |
23 24
|
bitri |
|
| 26 |
18 25
|
sylib |
|
| 27 |
|
0ex |
|
| 28 |
11
|
elrnmpt |
|
| 29 |
27 28
|
ax-mp |
|
| 30 |
26 29
|
sylnibr |
|
| 31 |
|
ac5num |
|
| 32 |
17 30 31
|
syl2anc |
|
| 33 |
|
ffn |
|
| 34 |
33
|
anim1i |
|
| 35 |
8
|
3ad2ant2 |
|
| 36 |
|
fveq2 |
|
| 37 |
|
id |
|
| 38 |
36 37
|
eleq12d |
|
| 39 |
11 38
|
ralrnmptw |
|
| 40 |
35 39
|
syl |
|
| 41 |
40
|
anbi2d |
|
| 42 |
34 41
|
imbitrid |
|
| 43 |
|
simpl1 |
|
| 44 |
43
|
mptexd |
|
| 45 |
|
elrabi |
|
| 46 |
45
|
ralimi |
|
| 47 |
46
|
ad2antll |
|
| 48 |
|
eqid |
|
| 49 |
48
|
fmpt |
|
| 50 |
47 49
|
sylib |
|
| 51 |
|
nfcv |
|
| 52 |
51
|
elrabsf |
|
| 53 |
52
|
simprbi |
|
| 54 |
53
|
ralimi |
|
| 55 |
54
|
ad2antll |
|
| 56 |
50 55
|
jca |
|
| 57 |
|
feq1 |
|
| 58 |
|
nfmpt1 |
|
| 59 |
58
|
nfeq2 |
|
| 60 |
|
fvex |
|
| 61 |
60 1
|
sbcie |
|
| 62 |
|
fveq1 |
|
| 63 |
|
fvex |
|
| 64 |
48
|
fvmpt2 |
|
| 65 |
63 64
|
mpan2 |
|
| 66 |
62 65
|
sylan9eq |
|
| 67 |
66
|
sbceq1d |
|
| 68 |
61 67
|
bitr3id |
|
| 69 |
59 68
|
ralbida |
|
| 70 |
57 69
|
anbi12d |
|
| 71 |
44 56 70
|
spcedv |
|
| 72 |
71
|
ex |
|
| 73 |
42 72
|
syld |
|
| 74 |
73
|
exlimdv |
|
| 75 |
32 74
|
mpd |
|