Step |
Hyp |
Ref |
Expression |
1 |
|
ac6num.1 |
|
2 |
|
nfiu1 |
|
3 |
2
|
nfel1 |
|
4 |
|
ssiun2 |
|
5 |
|
ssexg |
|
6 |
5
|
expcom |
|
7 |
4 6
|
syl5 |
|
8 |
3 7
|
ralrimi |
|
9 |
|
dfiun2g |
|
10 |
8 9
|
syl |
|
11 |
|
eqid |
|
12 |
11
|
rnmpt |
|
13 |
12
|
unieqi |
|
14 |
10 13
|
eqtr4di |
|
15 |
|
id |
|
16 |
14 15
|
eqeltrrd |
|
17 |
16
|
3ad2ant2 |
|
18 |
|
simp3 |
|
19 |
|
necom |
|
20 |
|
rabn0 |
|
21 |
|
df-ne |
|
22 |
19 20 21
|
3bitr3i |
|
23 |
22
|
ralbii |
|
24 |
|
ralnex |
|
25 |
23 24
|
bitri |
|
26 |
18 25
|
sylib |
|
27 |
|
0ex |
|
28 |
11
|
elrnmpt |
|
29 |
27 28
|
ax-mp |
|
30 |
26 29
|
sylnibr |
|
31 |
|
ac5num |
|
32 |
17 30 31
|
syl2anc |
|
33 |
|
ffn |
|
34 |
33
|
anim1i |
|
35 |
8
|
3ad2ant2 |
|
36 |
|
fveq2 |
|
37 |
|
id |
|
38 |
36 37
|
eleq12d |
|
39 |
11 38
|
ralrnmptw |
|
40 |
35 39
|
syl |
|
41 |
40
|
anbi2d |
|
42 |
34 41
|
syl5ib |
|
43 |
|
simpl1 |
|
44 |
43
|
mptexd |
|
45 |
|
elrabi |
|
46 |
45
|
ralimi |
|
47 |
46
|
ad2antll |
|
48 |
|
eqid |
|
49 |
48
|
fmpt |
|
50 |
47 49
|
sylib |
|
51 |
|
nfcv |
|
52 |
51
|
elrabsf |
|
53 |
52
|
simprbi |
|
54 |
53
|
ralimi |
|
55 |
54
|
ad2antll |
|
56 |
50 55
|
jca |
|
57 |
|
feq1 |
|
58 |
|
nfmpt1 |
|
59 |
58
|
nfeq2 |
|
60 |
|
fvex |
|
61 |
60 1
|
sbcie |
|
62 |
|
fveq1 |
|
63 |
|
fvex |
|
64 |
48
|
fvmpt2 |
|
65 |
63 64
|
mpan2 |
|
66 |
62 65
|
sylan9eq |
|
67 |
66
|
sbceq1d |
|
68 |
61 67
|
bitr3id |
|
69 |
59 68
|
ralbida |
|
70 |
57 69
|
anbi12d |
|
71 |
44 56 70
|
spcedv |
|
72 |
71
|
ex |
|
73 |
42 72
|
syld |
|
74 |
73
|
exlimdv |
|
75 |
32 74
|
mpd |
|