Metamath Proof Explorer


Theorem ac6s

Description: Equivalent of Axiom of Choice. Using the Boundedness Axiom bnd2 , we derive this strong version of ac6 that doesn't require B to be a set. (Contributed by NM, 4-Feb-2004)

Ref Expression
Hypotheses ac6s.1 A V
ac6s.2 y = f x φ ψ
Assertion ac6s x A y B φ f f : A B x A ψ

Proof

Step Hyp Ref Expression
1 ac6s.1 A V
2 ac6s.2 y = f x φ ψ
3 1 bnd2 x A y B φ z z B x A y z φ
4 vex z V
5 1 4 2 ac6 x A y z φ f f : A z x A ψ
6 5 anim2i z B x A y z φ z B f f : A z x A ψ
7 6 eximi z z B x A y z φ z z B f f : A z x A ψ
8 fss f : A z z B f : A B
9 8 expcom z B f : A z f : A B
10 9 anim1d z B f : A z x A ψ f : A B x A ψ
11 10 eximdv z B f f : A z x A ψ f f : A B x A ψ
12 11 imp z B f f : A z x A ψ f f : A B x A ψ
13 12 exlimiv z z B f f : A z x A ψ f f : A B x A ψ
14 3 7 13 3syl x A y B φ f f : A B x A ψ