Metamath Proof Explorer


Theorem ac6s2

Description: Generalization of the Axiom of Choice to classes. Slightly strengthened version of ac6s3 . (Contributed by NM, 29-Sep-2006)

Ref Expression
Hypotheses ac6s.1 A V
ac6s.2 y = f x φ ψ
Assertion ac6s2 x A y φ f f Fn A x A ψ

Proof

Step Hyp Ref Expression
1 ac6s.1 A V
2 ac6s.2 y = f x φ ψ
3 rexv y V φ y φ
4 3 ralbii x A y V φ x A y φ
5 1 2 ac6s x A y V φ f f : A V x A ψ
6 ffn f : A V f Fn A
7 6 anim1i f : A V x A ψ f Fn A x A ψ
8 7 eximi f f : A V x A ψ f f Fn A x A ψ
9 5 8 syl x A y V φ f f Fn A x A ψ
10 4 9 sylbir x A y φ f f Fn A x A ψ