Metamath Proof Explorer


Theorem ac6sf

Description: Version of ac6 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008)

Ref Expression
Hypotheses ac6sf.1 y ψ
ac6sf.2 A V
ac6sf.3 y = f x φ ψ
Assertion ac6sf x A y B φ f f : A B x A ψ

Proof

Step Hyp Ref Expression
1 ac6sf.1 y ψ
2 ac6sf.2 A V
3 ac6sf.3 y = f x φ ψ
4 cbvrexsvw y B φ z B z y φ
5 4 ralbii x A y B φ x A z B z y φ
6 1 3 sbhypf z = f x z y φ ψ
7 2 6 ac6s x A z B z y φ f f : A B x A ψ
8 5 7 sylbi x A y B φ f f : A B x A ψ