Metamath Proof Explorer


Theorem ac6sg

Description: ac6s with sethood as antecedent. (Contributed by FL, 3-Aug-2009)

Ref Expression
Hypothesis ac6sg.1 y = f x φ ψ
Assertion ac6sg A V x A y B φ f f : A B x A ψ

Proof

Step Hyp Ref Expression
1 ac6sg.1 y = f x φ ψ
2 raleq z = A x z y B φ x A y B φ
3 feq2 z = A f : z B f : A B
4 raleq z = A x z ψ x A ψ
5 3 4 anbi12d z = A f : z B x z ψ f : A B x A ψ
6 5 exbidv z = A f f : z B x z ψ f f : A B x A ψ
7 2 6 imbi12d z = A x z y B φ f f : z B x z ψ x A y B φ f f : A B x A ψ
8 vex z V
9 8 1 ac6s x z y B φ f f : z B x z ψ
10 7 9 vtoclg A V x A y B φ f f : A B x A ψ