Metamath Proof Explorer


Theorem ac9

Description: An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of Enderton p. 55 and its converse. (Contributed by Mario Carneiro, 22-Mar-2013)

Ref Expression
Hypotheses ac6c4.1 A V
ac6c4.2 B V
Assertion ac9 x A B x A B

Proof

Step Hyp Ref Expression
1 ac6c4.1 A V
2 ac6c4.2 B V
3 1 2 ac6c4 x A B f f Fn A x A f x B
4 n0 x A B f f x A B
5 vex f V
6 5 elixp f x A B f Fn A x A f x B
7 6 exbii f f x A B f f Fn A x A f x B
8 4 7 bitr2i f f Fn A x A f x B x A B
9 3 8 sylib x A B x A B
10 ixpn0 x A B x A B
11 9 10 impbii x A B x A B