Metamath Proof Explorer


Theorem acacni

Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acacni CHOICE A V AC _ A = V

Proof

Step Hyp Ref Expression
1 simpr CHOICE A V A V
2 vex x V
3 simpl CHOICE A V CHOICE
4 dfac10 CHOICE dom card = V
5 3 4 sylib CHOICE A V dom card = V
6 2 5 eleqtrrid CHOICE A V x dom card
7 numacn A V x dom card x AC _ A
8 1 6 7 sylc CHOICE A V x AC _ A
9 2 a1i CHOICE A V x V
10 8 9 2thd CHOICE A V x AC _ A x V
11 10 eqrdv CHOICE A V AC _ A = V