Step |
Hyp |
Ref |
Expression |
1 |
|
biidd |
|
2 |
1
|
cbvralvw |
|
3 |
|
elequ1 |
|
4 |
3
|
anbi2d |
|
5 |
4
|
rexbidv |
|
6 |
5
|
cbvreuvw |
|
7 |
6
|
ralbii |
|
8 |
2 7
|
bitri |
|
9 |
8
|
ralbii |
|
10 |
|
elequ1 |
|
11 |
10
|
anbi1d |
|
12 |
11
|
rexbidv |
|
13 |
12
|
reueqd |
|
14 |
13
|
raleqbi1dv |
|
15 |
14
|
cbvralvw |
|
16 |
|
elequ1 |
|
17 |
16
|
anbi1d |
|
18 |
17
|
rexbidv |
|
19 |
18
|
reueqd |
|
20 |
19
|
raleqbi1dv |
|
21 |
20
|
cbvralvw |
|
22 |
9 15 21
|
3bitr4i |
|
23 |
22
|
exbii |
|
24 |
|
19.21v |
|
25 |
|
impexp |
|
26 |
|
bi2.04 |
|
27 |
25 26
|
bitri |
|
28 |
27
|
albii |
|
29 |
|
eu6 |
|
30 |
|
df-reu |
|
31 |
|
19.42v |
|
32 |
|
an42 |
|
33 |
|
anass |
|
34 |
32 33
|
bitr3i |
|
35 |
34
|
exbii |
|
36 |
|
df-rex |
|
37 |
|
elequ1 |
|
38 |
|
elequ2 |
|
39 |
|
elequ2 |
|
40 |
38 39
|
anbi12d |
|
41 |
37 40
|
anbi12d |
|
42 |
41
|
cbvexvw |
|
43 |
36 42
|
bitri |
|
44 |
43
|
anbi2i |
|
45 |
31 35 44
|
3bitr4i |
|
46 |
45
|
bibi1i |
|
47 |
46
|
albii |
|
48 |
47
|
exbii |
|
49 |
29 30 48
|
3bitr4i |
|
50 |
49
|
imbi2i |
|
51 |
50
|
albii |
|
52 |
|
df-ral |
|
53 |
|
nfv |
|
54 |
|
nfv |
|
55 |
|
nfa1 |
|
56 |
55
|
nfex |
|
57 |
54 56
|
nfim |
|
58 |
|
elequ1 |
|
59 |
58
|
imbi1d |
|
60 |
53 57 59
|
cbvalv1 |
|
61 |
51 52 60
|
3bitr4i |
|
62 |
61
|
imbi2i |
|
63 |
24 28 62
|
3bitr4i |
|
64 |
63
|
albii |
|
65 |
|
alcom |
|
66 |
|
df-ral |
|
67 |
64 65 66
|
3bitr4ri |
|
68 |
67
|
exbii |
|
69 |
23 68
|
bitri |
|