Metamath Proof Explorer


Theorem aciunf1lem

Description: Choice in an index union. (Contributed by Thierry Arnoux, 8-Nov-2019)

Ref Expression
Hypotheses acunirnmpt.0 φ A V
acunirnmpt.1 φ j A B
aciunf1lem.a _ j A
aciunf1lem.1 φ j A B W
Assertion aciunf1lem φ f f : j A B 1-1 j A j × B x j A B 2 nd f x = x

Proof

Step Hyp Ref Expression
1 acunirnmpt.0 φ A V
2 acunirnmpt.1 φ j A B
3 aciunf1lem.a _ j A
4 aciunf1lem.1 φ j A B W
5 nfiu1 _ j j A B
6 nfcsb1v _ j g x / j B
7 eqid j A B = j A B
8 csbeq1a j = g x B = g x / j B
9 1 2 3 5 6 7 8 4 acunirnmpt2f φ g g : j A B A x j A B x g x / j B
10 nfv x φ
11 nfv x g : j A B A
12 nfra1 x x j A B x g x / j B
13 11 12 nfan x g : j A B A x j A B x g x / j B
14 10 13 nfan x φ g : j A B A x j A B x g x / j B
15 nfv j φ
16 nfcv _ j g
17 16 5 3 nff j g : j A B A
18 nfcv _ j x
19 18 6 nfel j x g x / j B
20 5 19 nfralw j x j A B x g x / j B
21 17 20 nfan j g : j A B A x j A B x g x / j B
22 15 21 nfan j φ g : j A B A x j A B x g x / j B
23 18 5 nfel j x j A B
24 22 23 nfan j φ g : j A B A x j A B x g x / j B x j A B
25 nfcv _ j g x x
26 nfiu1 _ j j A j × B
27 25 26 nfel j g x x j A j × B
28 simplr φ g : j A B A x j A B x g x / j B x j A B g : j A B A x j A B x g x / j B
29 28 simpld φ g : j A B A x j A B x g x / j B x j A B g : j A B A
30 29 ad2antrr φ g : j A B A x j A B x g x / j B x j A B j A x B g : j A B A
31 simpllr φ g : j A B A x j A B x g x / j B x j A B j A x B x j A B
32 30 31 ffvelrnd φ g : j A B A x j A B x g x / j B x j A B j A x B g x A
33 fvex g x V
34 33 snid g x g x
35 34 a1i φ g : j A B A x j A B x g x / j B x j A B j A x B g x g x
36 28 simprd φ g : j A B A x j A B x g x / j B x j A B x j A B x g x / j B
37 simpr φ g : j A B A x j A B x g x / j B x j A B x j A B
38 rsp x j A B x g x / j B x j A B x g x / j B
39 36 37 38 sylc φ g : j A B A x j A B x g x / j B x j A B x g x / j B
40 39 ad2antrr φ g : j A B A x j A B x g x / j B x j A B j A x B x g x / j B
41 35 40 jca φ g : j A B A x j A B x g x / j B x j A B j A x B g x g x x g x / j B
42 opelxp g x x g x × g x / j B g x g x x g x / j B
43 41 42 sylibr φ g : j A B A x j A B x g x / j B x j A B j A x B g x x g x × g x / j B
44 sneq k = g x k = g x
45 csbeq1 k = g x k / j B = g x / j B
46 44 45 xpeq12d k = g x k × k / j B = g x × g x / j B
47 46 eleq2d k = g x g x x k × k / j B g x x g x × g x / j B
48 47 rspcev g x A g x x g x × g x / j B k A g x x k × k / j B
49 32 43 48 syl2anc φ g : j A B A x j A B x g x / j B x j A B j A x B k A g x x k × k / j B
50 eliun g x x j A j × B j A g x x j × B
51 nfcv _ k A
52 nfv k g x x j × B
53 nfcv _ j k
54 nfcsb1v _ j k / j B
55 53 54 nfxp _ j k × k / j B
56 25 55 nfel j g x x k × k / j B
57 sneq j = k j = k
58 csbeq1a j = k B = k / j B
59 57 58 xpeq12d j = k j × B = k × k / j B
60 59 eleq2d j = k g x x j × B g x x k × k / j B
61 3 51 52 56 60 cbvrexfw j A g x x j × B k A g x x k × k / j B
62 50 61 bitri g x x j A j × B k A g x x k × k / j B
63 49 62 sylibr φ g : j A B A x j A B x g x / j B x j A B j A x B g x x j A j × B
64 eliun x j A B j A x B
65 64 biimpi x j A B j A x B
66 65 adantl φ g : j A B A x j A B x g x / j B x j A B j A x B
67 24 27 63 66 r19.29af2 φ g : j A B A x j A B x g x / j B x j A B g x x j A j × B
68 67 ex φ g : j A B A x j A B x g x / j B x j A B g x x j A j × B
69 14 68 ralrimi φ g : j A B A x j A B x g x / j B x j A B g x x j A j × B
70 vex x V
71 33 70 opth g x x = g y y g x = g y x = y
72 71 simprbi g x x = g y y x = y
73 72 rgen2w x j A B y j A B g x x = g y y x = y
74 73 a1i φ g : j A B A x j A B x g x / j B x j A B y j A B g x x = g y y x = y
75 69 74 jca φ g : j A B A x j A B x g x / j B x j A B g x x j A j × B x j A B y j A B g x x = g y y x = y
76 eqid x j A B g x x = x j A B g x x
77 fveq2 x = y g x = g y
78 id x = y x = y
79 77 78 opeq12d x = y g x x = g y y
80 76 79 f1mpt x j A B g x x : j A B 1-1 j A j × B x j A B g x x j A j × B x j A B y j A B g x x = g y y x = y
81 75 80 sylibr φ g : j A B A x j A B x g x / j B x j A B g x x : j A B 1-1 j A j × B
82 opex g x x V
83 76 fvmpt2 x j A B g x x V x j A B g x x x = g x x
84 82 83 mpan2 x j A B x j A B g x x x = g x x
85 37 84 syl φ g : j A B A x j A B x g x / j B x j A B x j A B g x x x = g x x
86 85 fveq2d φ g : j A B A x j A B x g x / j B x j A B 2 nd x j A B g x x x = 2 nd g x x
87 33 70 op2nd 2 nd g x x = x
88 86 87 eqtrdi φ g : j A B A x j A B x g x / j B x j A B 2 nd x j A B g x x x = x
89 88 ex φ g : j A B A x j A B x g x / j B x j A B 2 nd x j A B g x x x = x
90 14 89 ralrimi φ g : j A B A x j A B x g x / j B x j A B 2 nd x j A B g x x x = x
91 81 90 jca φ g : j A B A x j A B x g x / j B x j A B g x x : j A B 1-1 j A j × B x j A B 2 nd x j A B g x x x = x
92 nfcv _ j k
93 92 3 nfel j k A
94 15 93 nfan j φ k A
95 nfcv _ j W
96 54 95 nfel j k / j B W
97 94 96 nfim j φ k A k / j B W
98 eleq1w j = k j A k A
99 98 anbi2d j = k φ j A φ k A
100 58 eleq1d j = k B W k / j B W
101 99 100 imbi12d j = k φ j A B W φ k A k / j B W
102 97 101 4 chvarfv φ k A k / j B W
103 102 ralrimiva φ k A k / j B W
104 nfcv _ k B
105 3 51 104 54 58 cbviunf j A B = k A k / j B
106 iunexg A V k A k / j B W k A k / j B V
107 105 106 eqeltrid A V k A k / j B W j A B V
108 1 103 107 syl2anc φ j A B V
109 mptexg j A B V x j A B g x x V
110 f1eq1 f = x j A B g x x f : j A B 1-1 j A j × B x j A B g x x : j A B 1-1 j A j × B
111 nfcv _ x f
112 nfmpt1 _ x x j A B g x x
113 111 112 nfeq x f = x j A B g x x
114 fveq1 f = x j A B g x x f x = x j A B g x x x
115 114 fveqeq2d f = x j A B g x x 2 nd f x = x 2 nd x j A B g x x x = x
116 113 115 ralbid f = x j A B g x x x j A B 2 nd f x = x x j A B 2 nd x j A B g x x x = x
117 110 116 anbi12d f = x j A B g x x f : j A B 1-1 j A j × B x j A B 2 nd f x = x x j A B g x x : j A B 1-1 j A j × B x j A B 2 nd x j A B g x x x = x
118 117 spcegv x j A B g x x V x j A B g x x : j A B 1-1 j A j × B x j A B 2 nd x j A B g x x x = x f f : j A B 1-1 j A j × B x j A B 2 nd f x = x
119 108 109 118 3syl φ x j A B g x x : j A B 1-1 j A j × B x j A B 2 nd x j A B g x x x = x f f : j A B 1-1 j A j × B x j A B 2 nd f x = x
120 119 adantr φ g : j A B A x j A B x g x / j B x j A B g x x : j A B 1-1 j A j × B x j A B 2 nd x j A B g x x x = x f f : j A B 1-1 j A j × B x j A B 2 nd f x = x
121 91 120 mpd φ g : j A B A x j A B x g x / j B f f : j A B 1-1 j A j × B x j A B 2 nd f x = x
122 9 121 exlimddv φ f f : j A B 1-1 j A j × B x j A B 2 nd f x = x