| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackbij.f |  | 
						
							| 2 | 1 | ackbij1lem17 |  | 
						
							| 3 |  | f1f |  | 
						
							| 4 |  | frn |  | 
						
							| 5 | 2 3 4 | mp2b |  | 
						
							| 6 |  | eleq1 |  | 
						
							| 7 |  | eleq1 |  | 
						
							| 8 |  | eleq1 |  | 
						
							| 9 |  | peano1 |  | 
						
							| 10 |  | ackbij1lem3 |  | 
						
							| 11 | 9 10 | ax-mp |  | 
						
							| 12 | 1 | ackbij1lem13 |  | 
						
							| 13 |  | fveqeq2 |  | 
						
							| 14 | 13 | rspcev |  | 
						
							| 15 | 11 12 14 | mp2an |  | 
						
							| 16 |  | f1fn |  | 
						
							| 17 | 2 16 | ax-mp |  | 
						
							| 18 |  | fvelrnb |  | 
						
							| 19 | 17 18 | ax-mp |  | 
						
							| 20 | 15 19 | mpbir |  | 
						
							| 21 | 1 | ackbij1lem18 |  | 
						
							| 22 | 21 | adantl |  | 
						
							| 23 |  | suceq |  | 
						
							| 24 | 23 | eqeq2d |  | 
						
							| 25 | 24 | rexbidv |  | 
						
							| 26 | 22 25 | syl5ibcom |  | 
						
							| 27 | 26 | rexlimdva |  | 
						
							| 28 |  | fvelrnb |  | 
						
							| 29 | 17 28 | ax-mp |  | 
						
							| 30 |  | fvelrnb |  | 
						
							| 31 | 17 30 | ax-mp |  | 
						
							| 32 | 27 29 31 | 3imtr4g |  | 
						
							| 33 | 6 7 8 7 20 32 | finds |  | 
						
							| 34 | 33 | ssriv |  | 
						
							| 35 | 5 34 | eqssi |  | 
						
							| 36 |  | dff1o5 |  | 
						
							| 37 | 2 35 36 | mpbir2an |  |