Metamath Proof Explorer


Theorem ackbij1b

Description: The Ackermann bijection, part 1b: the bijection from ackbij1 restricts naturally to the powers of particular naturals. (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypothesis ackbij.f F = x 𝒫 ω Fin card y x y × 𝒫 y
Assertion ackbij1b A ω F 𝒫 A = card 𝒫 A

Proof

Step Hyp Ref Expression
1 ackbij.f F = x 𝒫 ω Fin card y x y × 𝒫 y
2 1 ackbij1lem17 F : 𝒫 ω Fin 1-1 ω
3 ackbij2lem1 A ω 𝒫 A 𝒫 ω Fin
4 pwexg A ω 𝒫 A V
5 f1imaeng F : 𝒫 ω Fin 1-1 ω 𝒫 A 𝒫 ω Fin 𝒫 A V F 𝒫 A 𝒫 A
6 2 3 4 5 mp3an2i A ω F 𝒫 A 𝒫 A
7 nnfi A ω A Fin
8 pwfi A Fin 𝒫 A Fin
9 7 8 sylib A ω 𝒫 A Fin
10 ficardid 𝒫 A Fin card 𝒫 A 𝒫 A
11 ensym card 𝒫 A 𝒫 A 𝒫 A card 𝒫 A
12 9 10 11 3syl A ω 𝒫 A card 𝒫 A
13 entr F 𝒫 A 𝒫 A 𝒫 A card 𝒫 A F 𝒫 A card 𝒫 A
14 6 12 13 syl2anc A ω F 𝒫 A card 𝒫 A
15 onfin2 ω = On Fin
16 inss2 On Fin Fin
17 15 16 eqsstri ω Fin
18 ficardom 𝒫 A Fin card 𝒫 A ω
19 9 18 syl A ω card 𝒫 A ω
20 17 19 sselid A ω card 𝒫 A Fin
21 php3 card 𝒫 A Fin F 𝒫 A card 𝒫 A F 𝒫 A card 𝒫 A
22 21 ex card 𝒫 A Fin F 𝒫 A card 𝒫 A F 𝒫 A card 𝒫 A
23 20 22 syl A ω F 𝒫 A card 𝒫 A F 𝒫 A card 𝒫 A
24 sdomnen F 𝒫 A card 𝒫 A ¬ F 𝒫 A card 𝒫 A
25 23 24 syl6 A ω F 𝒫 A card 𝒫 A ¬ F 𝒫 A card 𝒫 A
26 14 25 mt2d A ω ¬ F 𝒫 A card 𝒫 A
27 fvex F a V
28 ackbij1lem3 A ω A 𝒫 ω Fin
29 elpwi a 𝒫 A a A
30 1 ackbij1lem12 A 𝒫 ω Fin a A F a F A
31 28 29 30 syl2an A ω a 𝒫 A F a F A
32 1 ackbij1lem10 F : 𝒫 ω Fin ω
33 peano1 ω
34 32 33 f0cli F a ω
35 nnord F a ω Ord F a
36 34 35 ax-mp Ord F a
37 32 33 f0cli F A ω
38 nnord F A ω Ord F A
39 37 38 ax-mp Ord F A
40 ordsucsssuc Ord F a Ord F A F a F A suc F a suc F A
41 36 39 40 mp2an F a F A suc F a suc F A
42 31 41 sylib A ω a 𝒫 A suc F a suc F A
43 1 ackbij1lem14 A ω F A = suc F A
44 1 ackbij1lem8 A ω F A = card 𝒫 A
45 43 44 eqtr3d A ω suc F A = card 𝒫 A
46 45 adantr A ω a 𝒫 A suc F A = card 𝒫 A
47 42 46 sseqtrd A ω a 𝒫 A suc F a card 𝒫 A
48 sucssel F a V suc F a card 𝒫 A F a card 𝒫 A
49 27 47 48 mpsyl A ω a 𝒫 A F a card 𝒫 A
50 49 ralrimiva A ω a 𝒫 A F a card 𝒫 A
51 f1fun F : 𝒫 ω Fin 1-1 ω Fun F
52 2 51 ax-mp Fun F
53 f1dm F : 𝒫 ω Fin 1-1 ω dom F = 𝒫 ω Fin
54 2 53 ax-mp dom F = 𝒫 ω Fin
55 3 54 sseqtrrdi A ω 𝒫 A dom F
56 funimass4 Fun F 𝒫 A dom F F 𝒫 A card 𝒫 A a 𝒫 A F a card 𝒫 A
57 52 55 56 sylancr A ω F 𝒫 A card 𝒫 A a 𝒫 A F a card 𝒫 A
58 50 57 mpbird A ω F 𝒫 A card 𝒫 A
59 sspss F 𝒫 A card 𝒫 A F 𝒫 A card 𝒫 A F 𝒫 A = card 𝒫 A
60 58 59 sylib A ω F 𝒫 A card 𝒫 A F 𝒫 A = card 𝒫 A
61 orel1 ¬ F 𝒫 A card 𝒫 A F 𝒫 A card 𝒫 A F 𝒫 A = card 𝒫 A F 𝒫 A = card 𝒫 A
62 26 60 61 sylc A ω F 𝒫 A = card 𝒫 A