Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
The Ackermann bijection
ackbij1lem1
Next ⟩
ackbij1lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ackbij1lem1
Description:
Lemma for
ackbij2
.
(Contributed by
Stefan O'Rear
, 18-Nov-2014)
Ref
Expression
Assertion
ackbij1lem1
⊢
¬
A
∈
B
→
B
∩
suc
⁡
A
=
B
∩
A
Proof
Step
Hyp
Ref
Expression
1
df-suc
⊢
suc
⁡
A
=
A
∪
A
2
1
ineq2i
⊢
B
∩
suc
⁡
A
=
B
∩
A
∪
A
3
indi
⊢
B
∩
A
∪
A
=
B
∩
A
∪
B
∩
A
4
2
3
eqtri
⊢
B
∩
suc
⁡
A
=
B
∩
A
∪
B
∩
A
5
disjsn
⊢
B
∩
A
=
∅
↔
¬
A
∈
B
6
5
biimpri
⊢
¬
A
∈
B
→
B
∩
A
=
∅
7
6
uneq2d
⊢
¬
A
∈
B
→
B
∩
A
∪
B
∩
A
=
B
∩
A
∪
∅
8
un0
⊢
B
∩
A
∪
∅
=
B
∩
A
9
7
8
eqtrdi
⊢
¬
A
∈
B
→
B
∩
A
∪
B
∩
A
=
B
∩
A
10
4
9
eqtrid
⊢
¬
A
∈
B
→
B
∩
suc
⁡
A
=
B
∩
A