Metamath Proof Explorer


Theorem ackbij1lem10

Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypothesis ackbij.f F=x𝒫ωFincardyxy×𝒫y
Assertion ackbij1lem10 F:𝒫ωFinω

Proof

Step Hyp Ref Expression
1 ackbij.f F=x𝒫ωFincardyxy×𝒫y
2 elinel2 x𝒫ωFinxFin
3 snfi yFin
4 elinel1 x𝒫ωFinx𝒫ω
5 4 elpwid x𝒫ωFinxω
6 onfin2 ω=OnFin
7 inss2 OnFinFin
8 6 7 eqsstri ωFin
9 5 8 sstrdi x𝒫ωFinxFin
10 9 sselda x𝒫ωFinyxyFin
11 pwfi yFin𝒫yFin
12 10 11 sylib x𝒫ωFinyx𝒫yFin
13 xpfi yFin𝒫yFiny×𝒫yFin
14 3 12 13 sylancr x𝒫ωFinyxy×𝒫yFin
15 14 ralrimiva x𝒫ωFinyxy×𝒫yFin
16 iunfi xFinyxy×𝒫yFinyxy×𝒫yFin
17 2 15 16 syl2anc x𝒫ωFinyxy×𝒫yFin
18 ficardom yxy×𝒫yFincardyxy×𝒫yω
19 17 18 syl x𝒫ωFincardyxy×𝒫yω
20 1 19 fmpti F:𝒫ωFinω